

we have transformed CO₂ into products for flagship customers

E-Jet[®]: World's first jet fuel made from CO₂ electrolysis World's first CO₂Made[®] ingredients for Tide

U.S. AIR FORCE

twelve | a world made from air

CO2Made°/e•naphtha°

World's first CO₂Made[®] auto parts

World's first CO₂Made[®] sunglass lenses

Twelve is backed by the world's leading climate investors

Over \$700 million raised in company equity and project finance since 2021

Founded 2016, Stanford University

twelve | a world made from air

we transform CO₂ into ingredients for chemicals, materials, and fuels

process: a platform technology that enables PEM electrolyzers to make carbon-based products

Twelve's AirPlant[™] turns CO₂ into fuels and building blocks for materials

Twelve combines proprietary low temperature CO₂ electrolysis with H₂O electrolysis to produce syngas from captured CO₂ and water

Syngas is used to produce naphtha and drop-in fuels via Fischer-Tropsch process

E-Fuels E-Naphtha

Total CO₂ input in pathway: 3 kg CO₂ per kg product 3.

> Twelve's products are identical to conventional products with zero new emissions, zero fossil fuels, and zero tradeoffs in quality and performance

key inputs unlocking product value proposition

Biogenic sources of carbon dioxide

Pulp and paper factories Corn ethanol plants Biogas facilities

Renewable sources of energy

Solar, Wind, Hydro & Nuclear

Green Hydrogen

Direct acquisition Water electrolysis

E-Jet has 90% lower lifecycle emissions than fossil jet fuel

Notes:

- Petroleum Jet Fuel range depends on geography¹
- Biomass-Derived Jet Fuel range depends on feedstock²

(Alcohol-to-Jet low to high: Forestry Residues, Agricultural Residues, Sugarcane, Molasses, Herbaceous Energy Crops, Corn Grain) (HEFA low to high: Used Cooking Oil, Corn Oil, Palm Fatty Acid Distillate, Tallow, Brassica Carinata, Camelina, Soybean Oil, Rapeseed Oil, Palm Oil) (G + FT low to high: Agricultural Residues, Forestry Residues, Herbaceous Energy Crops, Short-Rotation Woody Crops, Municipal Solid Waste (40% non-biogenic component))

• Twelve eJet range depends on low-carbon electricity source (low to high: hydroelectric, nuclear, wind, solar)

¹ Jing, L. et al. Nat Commun **13**, 7853 (2022).

first production plant

Location: Moses Lake, WA

Capacity: 5 BPD E-fuel

Production Start: H1 2024

Staff: 15-20 people

Operation: 24/7 operations

Products: SAF, naphtha

CO2: Corn-Ethanol Factory

Electricity: Hydro (100%)

Ashwin Jadhav Vice President **Business Development** ashwin.jadhav@twelve.co LinkedIn

Follow Twelve on Social Media!

www.twelve.co

the future is fossil free

our board

Anne Roby, Independent Board Director Former EVP of Praxair, Linde, Member of the National Academy of Engineering

Zack Bogue, Board Member Co-founder and managing partner @ DCVC

Founders

Dr. Kendra Kuhl, CTO PhD in Chemistry, Stanford Post Doc, SLAC National Lab

Ion Yadigaroglu, Board Member Co-founder and partner @ Capricorn Investment Group

Elizabeth Stone, Board member Principal @ TPG Rise Climate

Dr. Etosha Cave, CSO PhD in Mechanical Eng., Stanford

Nicholas Flanders, CEO MBA/MS Stanford, McKinsey, COO Levo

E-NaphthaTM is carbon negative

Cradle to gate lifecycle emissions – kg CO_2 / kg Naphtha

Notes

- Allocation of emissions to naphtha and e-jet based on mass
- Naphtha baseline emissions calculated using inventory from ecoinvent 3.7 and process outlined in Plastics Euro 2015 LCA on SAN and ABS
- Green hydrogen emissions adapted from NREL's LCA of Renewable Hydrogen Production via Wind/Electrolysis, 2004.
- CO2-to-CO impacts calculated using inventory from ecoinvent 3.7, and process outlined internally.
- CO2 capture impacts adapted from Advanced Post-Combustion CO2 Capture, Prepared for the Clean Air Task Force, 2009.

gigafactory (future)

- 100,000 square feet
- Office for manufacturing technicians, supervisors, minimal G&A: employee seating, conference rooms, break room, etc.
- Manufacturing capabilities (Phase 1 and 2)
 - Automated Plate Assembly
 - Automated MEA Assembly
 - Automated Stack assembly
 - Balance of plant/electrolyzer skid assembly

	Automated sta assembly
	BoP/Skid asse
	Office & suppo
`~	 Confidential

market landscape

Source: BloombergNEF

Optimizing operations and aircraft

SAF product landscape

	HEFA	Alcohol-to-jet ⁱ	Gasification/FT	Power-to-liquid
Opportunity description	Safe, proven, and scalable technology	Potential in the mid-term, however significant techno-economical uncertainty		Proof of concept 2025+, primarily whe cheap high-volume electricity is available
Technology maturity	Mature	Commercial pilot		In development
Feedstock	Waste and residue lipids, purposely grown oil energy plants ⁱⁱ Transportable and with existing supply chains Potential to cover 5%-10% of total jet fuel demand	Agricultural and forestry residues, municipal solid waste ^w , purposely grown cellulosic energy crops ^v High availability of cheap feedstock, but fragmented collection		CO ₂ and green electricity Unlimited potential via direct air capture Point source capture as bridging technology
% LCA GHG reduction vs. fossil jet	<mark>73%–84%</mark> ≣	{	35%-9 <mark>4%</mark> ^{vi}	99%vii
% LCA GHG reduction vs. fossil jet i. Ethanol route; gas./FT; v. As re	Transportable and with existing supply chains Potential to cover 5%-10% of total jet fuel demand 73%-84% ⁱⁱⁱ ii. Oilseed bearing trees on low-ILUC otational cover crops: vi. Excluding a	Grown cell High availa feedstock, collection { 	bility of cheap but fragmented 35%-94% ^{vi}	capture Point source capture a technology 99% ^{vii} ble oil crops; iv. Mainly used hain

Source: CORSIA; RED II; De Jong et al. 2017; GLOBIUM 2015; ICCT 2017; ICCT 2019; E4tech 2020; Hayward et al. 2014; ENERGINET renewables catalogue; Van Dyk et al., 2019; NRL 2010; Umweltbundesamt 2016

swot analysis

Strengths

- Drop-in capability (fuel, logistics, engine) •
- High energy density •
- Huge global renewable power potentials
- Near-zero GHG emissions potential well-to-wake •
- Compared to biofuels ►
 - lower water demand
 - Iower land requirements

Challenges/Weaknesses

- Total costs of fuel production
- Renewable CO₂ supply ►
- No option for zero pollutant emissions

Source: Ludwig-Bolkow Systemtechnik GmbH (2016)

Opportunities

- Strengthening the local economy
- Business perspective for regions with large wind and solar power potentials
- Provision of grid ancillary services
- Possible reductions of local and highaltitude emissions

Power-to-Liquids

Potential concerns/Threats

- Lock-in of established aircraft technologies (combustion engines)
- Lock-in of conventional CO₂ sources for synthesis
- Acceptance of extensive renewable power plants

global emissions footprint

Top 10 countries with highest CO₂ emissions

